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ABSTRACT 

Neither the existence of an intersection between the two single-component isotherms drawn on the 
same graph, nor the fact that the column saturation capacity for the more retained component is lower 
than that of the lesser retained component, have any major consequence on the chromatographic behavior 
of elution bands or on the formation of the isotachic train, as long as the equilibrium isotherms of the two 
components are properly described by the competitive Langmuir model. Significant deviation from this 
model could make impossible the formation of an isotachic train in displacement chromatography, but 
definitive experimental proof of the existence of this effect is lacking. 

INTRODUCTION 

The calculation of elution band profiles in preparative chromatography requires 
the knowledge of the equilibrium isotherms of the components involved [l&3]. It has 
been shown that the competitive Langmuir isotherm [4] is sometimes an excellent 
model [5] but that more often it is barely acceptable [6,7]. However, the use of the 
Langmuir model permits the achievement of realistic results in simulation studies. 
These results can be used for investigations of the mechanism of band separation and 
band interactions in overloaded columns. Experimental results agree qualitatively very 
well with the predictions obtained in these calculations [5,7]. 

In practice, it is generally observed that the best set of competitive Langmuir 
isotherms which fit experimental results corresponds to different column saturation 
capacities for the various components of the mixture. Analysis of experimental data 
shows that in a number of instances the more retained component is also the one for 
which the column saturation capacity is the smaller. This situation should be expected 
especially in reversed-phase chromatography, as the bulkiest component, which has 
the smallest column saturation capacity, is often also the one which is adsorbed the 
most strongly. The phenomenon, however, is not peculiar to adsorption chromato- 

graphy. 
When two compounds exhibit this type of behavior, their single-component 

isotherms plotted on the same graph intersect and, for this reason, the effect has often 
been referred to as isotherm intersection. The isotherm intersection effect has been 
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reported recently in overloaded elution [l] and displacement [2,3] chromatography. 
Cox and Snyder [I] suggested that the consequence of a lower saturation capacity of 
the more retained compound is that the displacement effect of the first-eluted 
compound by the second in overloaded elution is minimal. Subramanian and Cramer 
[3] showed that when the isotherms intersect, an isotachic displacement train cannot be 
achieved experimentally. They had to change the mobile phase composition to 
eliminate the isotherm intersection in order to perform displacement separations. They 
stated that their experimental results cannot be explained by a Langmuir-based model, 
as such a model predicts that the order of the bands in the isotachic displacement train 
depends only on the initial slopes of the isotherms and is independent of the displacer 
concentration, whether the isotherms of the feed components intersect or not. 

In a recent paper, we reported a study of the influence of the column saturation 
capacity on the intensity of the displacement and tag-along effects [Xl. We showed that 
the major contributions to the intensity of these effects are the ratio of the column 
saturation capacities for the two components and the feed composition which 
determines the ratio of the loading factors and the sample size. If we assume that the 
competitive Langmuir isotherm model remains valid in this case, the main consequence 
of a lower column saturation capacity for the more retained compound is that the 
displacement effect is enhanced and at the same time the separation deteriorates [8]. 
This is because, for a given sample size, the loading factor increases with decreasing 
column saturation capacity whereas the degree of column overload increases with 
increasing loading factor. On the other hand, at constant loading factor (i.e., if the 
sample size is decreased in proportion to the column saturation capacity), the 
separation is improved because of the enhanced displacement effect. These results of 
the ideal model of chromatography are confirmed by those of numerical solutions of 
the semi-ideal model [9]. 

The aim of this paper is a detailed discussion of the interactive behavior of the 
bands of two components in the case of intersecting single-component isotherms, when 
the competitive isotherms of the two components are assumed to follow the 
competitive Langmuir isotherm model. This study applies to both overloaded elution 
and displacement. 

THEORY 

Properties of the isotherm intersection 
The competitive Langmuir isotherm for a component i is given by: 

Qi = 

a&i 

1 + blCl + b&z 

where Ci and Qi are the equilibrium concentrations of the component i in the mobile 
and stationary phases, respectively, and ai and bi are numerical coefficients. The 
column saturation capacity, qs,i, is the product of the specific saturation capacity, 
Q,,i = ai/bi, and the volume of stationary phase contained in the column. The column 
saturation capacity is the natural unit of the sample size used in preparative 
chromatography. The loading factor for one component is the ratio of the actual 
amount of this compound in the sample and the column saturation capacity. 
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As discussed previously [9], the competitive isotherms of the components of 

a binary mixture are two surfaces which must intersect. This is easily demonstrated. 
When the relative concentration, C1/C2, of the two components in the mobile phase 
varies from 0 to infinity at constant total concentration (C, + CZ = C), the amount, 
Qr(C,,C,), of the first component adsorbed at equilibrium increases from 0 to 
Ql(C,O), whereas the amount of the second component adsorbed, Q2(C1,C2), 
decreases from Q2(0,C) to 0. Thus, the intersection of the isotherm surfaces by 
a vertical cylinder, which are two curves drawn on that cylinder, must intersect 
somewhere. Hence, the two surfaces intersect along a certain curve. 

To help in understanding the situation, a concrete representation of the 
isotherms is useful. This can be achieved with either false three-dimensional (3-D) plots 
or contour maps. Fig. la shows a view of the 3-D plot of the Langmuir isotherms in 
a case where the single-component isotherm intersection effect takes place 
(RQS = QS,JQS,r = 0.5). This figure does not exhibit any unusual feature resulting 
from the fact that the two single-component isotherms would intersect if they were 
drawn in the same plane. 

Fig. lb and c shows contour maps of the two sets of Langmuir isotherms used in 
the present work [RQS = 1.0 (Fig. lb) and RQS = 0.25 (Fig. lc)]. It is seen that these 
contour maps, showing the intersection of the surfaces Qi = f(C,,C,) by horizontal 
planes of increasing height, are fans of straight lines. For the isotherm of the first 
component, the general equation of these lines is 

c2=-;+$ 
2 2 

(2) 

where k is the height of the horizontal plane. C2 must be positive; this is possible only if 
k is smaller than the saturation capacity for the first compound, QS,, and for values of 
C1 larger than k/(al - b,k). Eqn. 2 defines a family of straight lines which all pass 
through the point of coordinates C1 = 0, C2 = - l/b2 (note that only positive 
concentrations have a physical meaning). The contours of the second-component 
isotherm are also straight lines whose equation can be obtained by exchanging the 
indices 1 and 2 in eqn. 2. Their general equation can be rearranged into 

c2 = 
k 

- kb2 + a2 
kbl c 

a2 -kb2 ’ (3) 

All the straight lines defined by eqn. 3 pass through the point of coordinates 
C1 = - l/br, C2 = 0. Thus, we obtain two fan-like families of straight lines as contour 
maps for a binary mixture. This result is seen in Fig. lb and c. It comes from the 
properties of eqn. 1, which defines a conoid surface. 

The two straight lines of the two families which correspond to the same value of 
k, i.e., the intersections of the two isotherm surfaces by the same horizontal plane, 
intersect in a point whose coordinates are such that C, = aCZ. As a consequence, the 
intersection of the two isotherm surfaces, Ql(C,,C,) and Qz(C1,Cz) is a curve in the 
vertical plane of trace C1 = aCZ. This result has already been demonstrated otherwise 

W’l. 
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Fig. 1. Three-dimensional representation of the Langmuir competitive isotherm surface for the two 
components of a binary mixture. (a) False 3-D plot of the isotherm surfaces for the two components. 
RQ, = 0.5. The specific column saturation capacity is larger for the first component (Q.,, = 5) than for the 

second (Q,,2 = 2.5). Apparent isotherm intersection takes place (aI = 24: aZ = 28.8). (b) Contour map of the 
isotherm surface for the first compound. RQ. = 1.0. Isotherm coefficients: a, = 24; aa = 28.8; bl = 12; 
b2 = 14.4. The specific saturation capacity is the same for the two components Q, 1 = Q..s = 2.0. The pure 
component isotherms do not intersect. The straight lines are intersections of the isotherm surface with the 
following planes: 1, QI = 0.10 Q,,, (x); 2, Qr = 0.167 Q,,, (A); 3, Qr = 0.25 Q,,, (0); 4, line Cz = I/c&, 
(0). (c) Same as(b), except RQ, = 0.25 (Q, , = 2.0, Q, z = 0.5, b2 = 57.6). The single-component isotherms 
intersect (see Fig. 2). 
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Fig. lb and c has the same features. For both components, the isotherm surfaces 
obtained in either instance look similar. The isotherms corresponding to the case when 
the column saturation capacity is four times larger for the lesser than for the more 
retained component do not have any special property. In cases where the competitive 
Langmuir model is valid, isotherm intersection cannot have any direct consequence in 
chromatography, as the coordinates of the intersection point have no physical 
significance and the separation factor of the system for the two components [(Qz/C,)/ 
(Qi/Ci) = az/al = cc] is independent of the concentrations. It is also independent of 
the column saturation capacities of the two components but depends only on the ratio 
of the origin slopes of the isotherms. 

Fig. 2 shows the overlaid plots of the single-component isotherms of both 
components of the mixture in the case when the column saturation capacity of the 
second-eluted component is four times smaller than that of the first. The single-com- 
ponent isotherms which intersect on a Qi(Ci) JWSUS Ci plot are in fact the curves Qi(Ci) 
and Qz(C,), which have nothing in common, not even the abscissa! The first curve is 
a plot of Ql versus Cl, at equilibrium of the first component between the two phases of 
the system, and the second curve is a plot of Q2 versus C2 under the same conditions. 
The intersection point has two different sets of coordinates depending on whether it is 

300 0.002 0.004 0.006 0.008 0.010 

c hlol/l ) 

Fig. 2. Single-component isotherm oftwo solutes. Q, = a,C1/(l +blC1), Q2 = a2Cz/(l f&C,), a; = kb,JF, 

k;,, = 6, Q,,, = 2, Qs,2 = 0.5, bi = ui/Q, i. The two isotherms intersect at C = 0.00463 M. 
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considered as a point on the first curve or a point on the second curve. It has no 
physical meaning. It does not exist on Fig. lc. 

The situaton may be different in displacement chromatography; it has been 
claimed that displacement is impossible in the case when single-component isotherms 
intersect because the elution order of the plateau concentration of the isocratic train 
would be different from the elution order at very low concentrations [3]. This requires 
further investigation. 

Effect of single-component isotherm intersection in displacement chromatography 
Rhee and Amundson [lo] reported a detailed theoretical study of displacement 

chromatography within the framework of the ideal model, using the competitive 
Langmuir isotherm. They showed that in this case it is always possible to achieve an 
isotachic train provided that a sufficiently long column is used and that the displacer 
concentration exceeds a threshold concentration given by 

where cd is the displacer concentration, ad/at = &d//&f is the ratio of the slopes of the 
displacer isotherm and of the less retained component isotherm at infinite dilution and 
bd = ad/q,,, is the second parameter of the competitive Langmuir isotherm of the 
displacer. 

We have recently shown that in the case of an actual column with a finite 
efficiency, the critical parameters in displacement chromatography are the displacer 
concentration, the loading factor and the column efficiency. This efficiency is the 
limiting efficiency obtained with very small size samples and results from the effects of 
axial dispersion and the resistances to mass transfers [ 111. The same condition as stated 
by eqn. 4 applies in non-ideal and ideal chromatography. However, when the displacer 
concentration increases, the plateau becomes narrower and narrower. In non-ideal 
chromatography the plateau is eroded because of the finite rate of the mass-transfer 
kinetics. It may disappear if the displacer concentration is too large [l 11. 

Thus, the theory of non-linear chromatography predicts that, as long as the 
competitive Langmuir isotherm model is valid, we must be able to generate isotachic 
trains in displacement chromatography, even if the single-component isotherm 
intersect. In this last case, the column saturation capacity for the second component is 
smaller than that of the first. To illustrate this point, which is important, let us compare 
the separation of two binary mixtures, A + B and A + B’, and assume that the only 
difference between these problems is in the column saturation capacity for the second 
component, which is larger for B than for B’. The isotherm surface for the first 
component, A, and the coefficient a2 for the second component, B or B’, is the same in 
both instances. If we inject the same amount of a feed having the same relative 
concentration ([A]/[B] = [A]/[B’]) of the two components, the loading factor of the 
second component is larger in the second case (B’) than in the first (B). The successful 
formation of an isotachic displacement train in the second case (lower column 
saturation capacity for B’) requires that we reduce the loading factor for B’ by using 
either a smaller sample size or a longer column. The proper set of experimental 
conditions may be more difficult to achieve for B’ than for B. 
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The calculation of the chromatograms obtained in displacement chromato- 
graphy under a variety of experimental conditions illustrates these theoretical 
considerations. 

RESULTS AND DISCUSSION 

Fig. 2 shows the single-component isotherms corresponding to the competitive 
isotherms in Fig. lc. These two isotherms intersect at C1 = CZ = 0.00463 M. Figs. 
3 and 4 compare the profiles of the zones of two compounds in displacement 
chromatography, for the same sample size. In Fig. 3, the column saturation capacities 
of the two components are identical (QS,1 = QS,2 = 2.0; the isotherms are not shown, 
since they are classical). In this figure, a successful isotachic displacement train has 
been formed. In Fig. 4 (QS,1 = 2, QS,2 = 0.5) in contrast, the isotachic displacement 

train is not formed although the amounts of the two components injected are the same 
for both Figs. 3 and 4. The zone profiles observed are typical of those taking place 
during this isotachic train formation [11,12]. The reason is that, as the sample size is the 
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Fig. 3. Calculated zone profiles in displacement chromatography. Experimental conditions: phase ratio, 
F = 0.25; flow velocity, 0.05 cm/s; column length, 25 cm; efficiency, N = 5000 theoretical plates. Langmuir 
competitive isotherm: Qi = aiCi/(l +biCi +bzCz +b&), ai = k&/F, kb 1 = 6, c(, z = /&//ce,, = 1.2, 

e size:‘injection time, t, = 250 s; feed 
= 0.02. 
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Fig, 4. Calculated zone profiles in displacement chromatography. Experimental conditions as for Fig. 3, 

except Q, 1 = Q.,d = 2, Q_ = 0.5, L,,, = 0.01, L,,, = 0.08. 

same for both figures and the column saturation capacity of the second component is 
four times smaller for Fig. 4 than for Fig. 3, the loading factor for the second 
component is four times larger in Fig. 4 than in Fig. 3,8% instead of 2%. The loading 
factor is inversely proportional to the volume of stationary phase, and hence decreases 
with increasing column length, in proportion to the reverse of this length. 

The zone profiles of the same binary mixture used for Fig. 4 is shown in Figs. 
5 and 6, with longer columns, 35 and 50 cm, respectively. Thus, for the same sample 
size, the loading factors for the second component are 5.7% and 4%, respectively. The 
formation of the isotachic train is more advanced in Fig. 5 than in Fig. 4 and it is 
successful in Fig. 6. We note, however, a remarkable difference between Figs. 3 and 6. In 
Fig. 3, the heights of the plateaux of each successive zone increase from the first to the 
second component and to the displacer. This is the normal behavior, when 
single-component isotherms do not intersect: the operating lines intersect successively 
the isotherms of these compounds in this order, corresponding to increasing mobile 
phase concentrations [lo-121. However, when the single-component isotherms intersect 
and if the displacer concentration is high enough, the operating line encounters the second 
component isotherm before, and at a lower concentration than, the first component 
isotherm. Thus, the plateau of the second zone is lower than the plateau of the first. 
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This result is also in agreement with the prediction of the equations giving the heights 
of the zones in displacement chromatography [lO,l 11. 

Instead of decreasing the loading factor by using a longer column, we can 
decrease it by using a smaller sample size. We show in Fig. 7 the chromatogram 
obtained with a sample size half that in Fig. 4 and a column length of 25 cm; the loading 
factors for the two components are the same as in Fig. 6. In Fig. 8, the composition of 
the feed has been changed so that the amount of first component injected is the same as 
in Fig. 3 or 4, but the amount of second component injected is four times smaller. The 
corresponding loading factors for the second component are 4% for Fig. 7 and 2% for 
Fig. 8. The loading factors for the two components are now the same in Figs. 3 and 8. 
In both instances, the successful formation of an isotachic displacement train is 
observed, although in Fig. 3 the single-component isotherms do not intersect (Qs,Z/Qs,l 
= 1) whereas in Fig. 8 they do (Qs,JQ1 = 0.25). As expected, the heights of the 
plateaux of the two components are the same in Figs. 6-8, as the displacer 
concentration is the same in all instances, but the lengths of the plateaux are two and 
four times shorter in Figs. 7 and 8 than in Fig. 6, respectively. 

These theoretical results and also those derived in overloaded elution chromato- 
graphy [8,9] are in contradiction with most experimental observations [l-3] whereas 
they agree well when the column saturation capacities are equal [5]. This suggests that 
the Langmuir competitive isotherm fails to predict correctly the equilibrium behavior 
of a binary mixture when the column saturation capacities of the two components are 
different. A more sophisticated model, such as that provided by the ideal adsorbed 
solution theory (IAS) [13], must be used. The IAS model predicts that the separation 
factor of the mixture (Q2C,/C,Q1) depends on the concentrations of the two 
components. As a consequence, very different results are obtained with this model 
which are in qualitative agreement with experimental observations [14,15]. 

CONCLUSION 

The formation of an isotachic displacement train is possible, whether the 
single-component isotherms intersect or not, under the condition that the equilibrium 
behavior of the binary mixture studied is correctly accounted for by the competitive 
Langmuir model. This result completes the demonstration that in this instance 
single-component isotherm intersection is not a physical phenomenon but an illusion 
(similarly to optical illusions). The formation of an isotachic displacement train simply 
requires that the loading factor be lower than a critical threshold. This result can be 
achieved by adjusting properly either the column length or the sample size. 

It should be emphasized that thermodynamic consistency requires that the 
column saturation capacities for two compounds whose binary competitive adsorp- 
tion is accounted for by the Langmuir model should be the same. Otherwise, the 
GibbssDuhem equation is not satisfied [16]. Frey [17] has given an interesting 
demonstration of the thermodynamic impossibility of an isotachic displacement train 
when the two isotherms intersect and the concentrations exceed those corresponding 
to the intersection point. He showed that the free energy consumed at the hypothetical 
front between the two components (with the component more retained at low 
concentrations placed upstream, as predicted by the Langmuir model) would be 
negative. Finally, and importantly, the competitive Langmuir isotherm model does 
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not give a very good representation of equilibrium data in most instances and this is 
especially true when the ratio of the column saturation capacities of the two 
compounds is significantly different from unity [7]. We consider this to be the main 
block at present to further progress in the understanding of the separation process in 
chromatography and in the derivation of accurate predictions of production rates and 
recovery yields. 

Finally, all the conclusions of this work are valid only as long as the competitive 
Langmuir isotherm model represents correctly the phase equilibria involved. Serious 
deviations from this model resulting in single-component isotherms which intersect 
may also lead to situations where displacement would be impossible, even though the 
isotherms are still convex upwards. If we assume that the single-component isotherms 
follow the Langmuir behavior, the IAS theory predicts that the separation factor 
depends on the concentrations of both components when the column saturation 
capacities of the two components are different. It predicts a reversal of the elution 
order when the single-component isotherms intersect. Then the formation of an 
isotachic train may become impossible, at least in some range of experimental 
conditions. 
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